On a Multi-particle Moser-trudinger Inequality

نویسنده

  • HAO FANG
چکیده

We verify a conjecture of Gillet-Soulé. We prove that the determinant of the Laplacian on a line bundle over CP is always bounded from above. This can also be viewed as a multi-particle generalization of the Moser-Trudinger Inequality. Furthermore, we conjecture that this functional achieves its maximum at the canonical metric. We give some evidence for this conjecture, as well as links to other fields of analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sharp Form of the Moser-trudinger Inequality on a Compact Riemannian Surface

In this paper, a sharp form of the Moser-Trudinger inequality is established on a compact Riemannian surface via the method of blow-up analysis, and the existence of an extremal function for such an inequality is proved.

متن کامل

Extremal Functions for Moser-trudinger Type Inequality on Compact Closed 4-manifolds

Given a compact closed four dimensional smooth Riemannian manifold, we prove existence of extremal functions for Moser-Trudinger type inequality. The method used is Blow-up analysis combined with capacity techniques.

متن کامل

A Hardy–Moser–Trudinger inequality

In this paper we obtain an inequality on the unit disk B in R2, which improves the classical Moser-Trudinger inequality and the classical Hardy inequality at the same time. Namely, there exists a constant C0 > 0 such that ∫ B e 4πu2 H(u) dx ≤ C0 <∞, ∀ u ∈ C 0 (B), where H(u) := ∫

متن کامل

2 1 Se p 20 09 On a version of Trudinger - Moser inequality with Möbius shift

The paper raises a question about the optimal critical nonlinearity for the Sobolev space in two dimensions, connected to loss of compactness, and discusses the pertinent concentration compactness framework. We study properties of the improved version of the TrudingerMoser inequality on the open unit disk B ⊂ R2, recently proved by G. Mancini and K. Sandeep [13]. Unlike the original Trudinger-M...

متن کامل

Affine Moser-Trudinger and Morrey-Sobolev inequalities

Abstract: An affine Moser-Trudinger inequality, which is stronger than the Euclidean MoserTrudinger inequality, is established. In this new affine analytic inequality an affine energy of the gradient replaces the standard L energy of gradient. The geometric inequality at the core of the affine Moser-Trudinger inequality is a recently established affine isoperimetric inequality for convex bodies...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004